Python _thread Mutex

When Python programs create threads, each thread shares the same global memory as every other thread. Usually, but not always, multiple threads can safely read from shared resources without issue. Threads writing to shared resources are a different story because one thread could potentially overwrite the work of another thread.

This post demonstrates an example program shown in Programming Python: Powerful Object-Oriented Programming where threads acquire and release locks in the program. The locking mechanism ensures that only one thread has access to a shared resource at a time.


Here is an example program with my own comments added.

import _thread as thread, time

# This mutex object is created by calling
# thread.allocate_lock()
# The mutex is responsible for synchronizing threads
mutex = thread.allocate_lock()

def counter(tid, count):
    for i in range(count):
        # The standard out is a shared resource
        # Unless the program controls access to the standard out
        # multiple threads can print to standard out at the same time
        # which results in garbage output
        # Acquire a lock
        # Now only the current thread can print to the console
        print('[{}] => {}'.format(tid, i))
        # Make sure to release the lock for other threads when finished

if __name__ == '__main__':
    for i in range(5):
        thread.start_new_thread(counter, (i, 5))

    print('Main thread exiting...')


The program creates five threads, each of which needs access to the standard output stream. The standard output stream is a global object that all of the threads share, which means that each thread can call print at the same time. That isn’t ideal because we can get garbage output printed to the console if two threads call the print() statement at the same time.

The solution is to lock access to the standard output stream so that only one thread may use it at a time. We do this by creating a mutex object on line 6 in the program by using thread.allocate_lock(). When a thread needs a lock, it calls acquire() on the mutex. At that point, all other threads that need protected resources have to sit and wait for mutex.release().

It’s important to keep the operations between mutex.acquire() and mutex.release() as brief as possible. Only one thread can hold a lock at a time, so the longer one thread holds a lock, the longer other threads need to wait for their turn to use the lock. That naturally impacts the performance of the overall program.


Lutz, Mark. Programming Python. Beijing, OReilly, 2013.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s