Parse Command Line Arguments in Python

Most command line programs allow users to pass command line arguments into a program. Consider, for example, the unix ls:

ls -a

Python programs can utilize such techniques by using sys.argv and performing string operations on each element in the argv list. Here is an example script from Programming Python: Powerful Object-Oriented Programming with my own comments added to the script. (Of course, the Python standard library provides much more sophisticated getopt and optparse modules which should be used in production programs)

def getopts(argv):
    # Create a dictionary to store command line options
    opts = {}

    # Iterate through each command line argument
    while argv:
        # Look for the dash symbol
        if argv[0][0] == '-':

            # Create an entry in the opts dictionary
            opts[argv[0]] = argv[1]

            # Slice off the last entry and continue
            argv = argv[2:]

            # Otherwise just slice of the last entry since there
            # was no command line switch
            argv = argv[1:]

    # Return the dictionary of the command line options
    return opts

# Only run this code if this is a standalone script
if __name__ == '__main__':
    # Put the argv option into our namespace
    from sys import argv

    # call our getopts function
    myargs = getopts(argv)

    # Print our output
    if '-i' in myargs:


Detailed Explanation

Our goal in this script is to look for any command line switches that are passed to the script. To start with, we need to import the argv object from the sys module which is a list that provides the command line options passed to the script. On line 30, we call our getopts function and pass the argv object to the function. The program’s execution jumps up to line 3.

Line 3 creates an empty dictionary object that will store all command line switches with their arguments. For example, we may end up with ‘-n’:”Bob Belcher” in this dictionary. Starting on line 6, we enter into a while loop that examines each entry in argv.

Line 8 looks at the first character in the first entry of argv (remember that Python String implement the [] operator). We are just checking if the character in question is a dash (‘-‘) character. If this character is a dash, we are going to create an entry into our opts dictionary on line 11. Then we slice off the next 2 entries in argv from the beginning of the list (one for the switch, the other one for the argument).

Line 15 is the alternative case. If argv[0][0] is something other than a dash, we are going to ignore it. We just slice off the first entry in argv (only one this time since there is no switch). Once argv is empty, we can return the opts dictionary to the caller.

The program execution resumes on line 33. For demonstration purposes, it checks if the myargs dictionary has a ‘-i’ key. If it does, it will print the value associated with ‘-i’. Then line 36 prints out the myarg dictionary.

When run from the console, the script will show output such as this.

Patricks-MacBook-Pro:system stonesoup$ python -h "Bob Belcher" -w "Linda Belcher" -d1 "Tina Belcher" -s "Gene Belcher" -d2 "Louise Belcher" 
{'-h': 'Bob Belcher', '-w': 'Linda Belcher', '-d1': 'Tina Belcher', '-s': 'Gene Belcher', '-d2': 'Louise Belcher'}

Kotlin Koans—Part 6

Insert Values into String

Kotlin upgrades some of Java’s String capabilities. One of the first things I liked was the ability to insert variables into the String

val a = 1
val b = 2
str = "Here is a String with values a=$a and b=$b)

We could of course have done this with String.format in Java

int a = 1;
int b = 2;
String str = "Here is a String with values a=%d and b=%d".format(a, b);

I think most people agree that the Kotlin approach is more concise.

Multiline Strings

Kotlin supports the “”” for mutliline strings without any need to escape charaters.

str = """
Here is a multiline String


The Kotlin Koans tutorial suggested that this was also useful for Regex expressions.


The task for this portion of the tutorial was simple enough. We have a variable named month that we insert into a regex expression.


fun task5(): String{
    return """\d{2}\ $month \d{4}"""

This a use case for the triple quote Strings. In Java, we would have needed to escape all of the backslashes in the regex expression. I know that I am not the first developer who has gotten burned by typing \ when I should have typed \\, so the triple quote String is a nice feature.

You can click here to see Part 5.

Kotlin Koans—Part 3

The last tutorial’s challange was to take a collection and assemble it into a string using StringBuilder. Java 8 finally gave developers a way to join a String, but Kotlin seems to make it even easier.

This partion of the Kotlin Koans tutorial has us using collection::joinToString. Using Kotlin, we can assemble an entire collection into a String using just one line of code.

fun task2(collection: Collection): String {
    return collection.joinToString(", ", "{", "}")

This code is functionally equivalent to what we did in part 2. I also learned a little bit more about the language. Kotlin let’s us have default parameters in our methods. I have to say, while I appreciate Java’s method overloading capabilities, there are times where it’s simplier to use default parameters.

You can click here to see Part 2 or Part 4

Kotlin Koans—Part 2

After doing the first tutorial on Kotlin, I was impressed, but let’s face it, anyone can do a simple “hello world” style program. Nevertheless, I decided to continue with the Kotlin tutorial found at When I moved onto part two of the tutorial, I was really impressed.

It wasn’t that I was super impressed with the language itself. It was IntelliJ’s support of Kotlin that blew me away. When you copy and paste Java code into the IDE, it will offer to translate it to Kotlin for you.

You can see in the video that IntelliJ just did the work of taking the Java code that I copied and pasted into my Kotlin class. I thought this was incredibly slick because it gave me the change to see the differences between Java and Kotlin.

Of course, I wanted to do the exercise myself so that I can get the hang of writing Kotlin code. The problem in this portion of the tutorial was to take this Java code and rewrite as Kotlin code.

public class JavaCode1 extends JavaCode {
    public String task1(Collection collection) {
        StringBuilder sb = new StringBuilder();
        Iterator iterator = collection.iterator();
        while (iterator.hasNext()) {
            Integer element =;
            if (iterator.hasNext()) {
                sb.append(", ");
        return sb.toString();

It’s not too painful of code. Here is what I ended with when I wrote the code as Kotlin code on my own.

fun todoTask1(collection: Collection): Nothing = TODO(
        Task 1.
        Rewrite JavaCode1.task1 in Kotlin.
        In IntelliJ IDEA, you can just copy-paste the code and agree to automatically convert it to Kotlin,
        but only for this task!
    references = { JavaCode1().task1(collection) })

fun task1(collection: Collection): String {
    val sb = StringBuilder()
    val iterator = collection.iterator()
    while (iterator.hasNext()){
        val element =
        if (iterator.hasNext()){
            sb.append(", ")
    return sb.toString()

There was one thing I noticed about the Kotlin code that I liked. It looks as if we are allowed to have free standing functions in Kotlin outside of a class definition. While I appreciate OOP, there are frankly times where I’m not sure if OOP is the best approach to a problem. This was one of things I really like about Python is that I can break out of OOP when I want.

Now I know that it’s perfectly true that we can use static imports in Java, but I have always felt that was a clumsy approach. Static functions and static imports always seemed more like an after thought to the language that got tacked on after enough people complained. Of course, that’s just a matter of opinion, but anyway, I do like having a choice in Kotlin about when to use classes or just when to use function. Kotlin seems to have included this choice as part of the design of the language right from the get go.

You can click here to see Part 1 and here to see Part 3.